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QUASI-STEADY STATE MULTI-PLASMA CLOUD CONFIGURATION
IN THE IONOSPHERE

1. INTRODUCTION

It has been observed that kilometer-scale size structures can persist

in both barium and nuclear cloud striation phenomena (J. Fedder, W. Chesnut

and L. Wittwer, 1980, private communication). Beyond a certain point (late

times) after the release of such plasma clouds, the bifurcation of clouds

appears to stop and there is a tendency for the striations to drift in

unison for as long as they can be seen. In addition, the survival for

hours of the kilometer scale structures has been evidenced by propagation

studies (Prettie et al., 1977). This observed behavior of ionospheric

plasma clouds is often referred to as the "freezing" phenomenon.

Recently, some studies have attempted to understand the apparent

observed cessation of the bifurcation process at a scale length of

kilometers. Modelling the plasma cloud and ionosphere as a single two-

dimensional layer perpendicular to the ambient geomagnetic field (Bo)

including cross-field diffusion due to electron-ion collisions, McDonald et

al. (1981) carried out theoretical and numerical simulation studies. They

produced a "U" shaped curve representing the minimum striation scale size

(a structure's stability against further bifurcation) as a function of the

ratio of the integrated Pedersen conductivity of the plasma cloud to the

background ionosphere. However, classical electron diffusivity

(- 1 m2 /sec) produced minimum scale sizes of the order of 10 to 30 m.

Consequently, anomalous diffusion (- 100 m2 /sec) had to be invoked in order

to obtain "freeze-up" of kilometer scale sizes. The work of Ossakow et al.

(1981) proposed that including a second level for the background ionosphere

(see, for example, Scannapleco et al., 1976) would allow image striations

Manuar pt approved January 24, 1984.
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to build up and allow the conductivity in a striation to be amplified.

This in turn would allow for larger conductivity ratios than if one had

just one cloud level, which in turn, could result in kilometer minimum

scale sizes by extrapolating the U shaped curve of McDonald et al. (1981)

to higher conductivity ratios.

The above studies have sought the possible mechanisms that may be

responsible for the apparent cessation of bifurcation associated with the E

x B gradient drift instability. However, there is another necessary

ingredient for the freezing phenomenon. After bifurcation has stopped, the

multiple striation fingers appear to undergo a quasi-steady state E x B

drift across the magnetic field B,. It is the latter issue of quasi-steady

state solutions that we will address in this paper.

Dungey (1958) and later Perkins et al. (1973) showed that the coupled

set of equations for density n and potential * describing the dynamics of

plasma clouds have no steady state solutions if the cloud, as described by

n, has a finite size (with the gradient of n) in the two dimensions

perpendicular to the magnetic field Bo. An exception to this rule is a

"waterbag" plasma cloud with a piecewise constant density profile with

constant densities nI and n2  inside and outside the plasma cloud,

respectively (e.g., elliptic, circular cylindrical, slab plasma clouds).

Linson (1972) solved the potential ( ) equation using methods such as those

found in Smythe (1950). In this approach, the continuity equation for n is

automatically satisfied. In this configuration, the induced electric field

is constant inside the single waterbag plasma cloud and is anti-parallel to

the external (zeroth order) electric field. Thus, the total field inside

is reduced. A method similar to that of Linson's was adopted by Ossakow

and Chaturvedi (1978) to study the morphology of rising equatorial spread F

/2



bubbles. In this case, the induced electric field is again constant inside

the single waterbag plasma bubble but is parallel to the external field so

that the total electric field inside is enhanced.

In a previous paper by Chen et al. (1983), hereafter referred to as

Paper I, a nontrivial extension of the single bubble model of Ossakow and

Chaturvedi (1978) was carried out to study a multi-bubble system. In Paper

1, the method of image dipoles was developed to solve the potential

equation analytically. In the presence of neighboring bubbles, it was

found that the induced electric field inside the multiple waterbag bubbles

is not constant and has components perpendicular as well as parallel to the

external (zeroth order) electric field. This implies that the bubble

contours would deform in the subsequent induced E x B drift motion and that

no steady-state solution exists.

In Paper I, it was noted that the analytical solution obtained for

bubbles (plasma density depletions) was also applicable to multiple clouds

(plasma density enhancements) such as one might encounter in plasma cloud

striation fingers. It was also shown that the interaction of the

neighboring bubbles and clouds is substantial for xo0/a < 3 (where 2xo is

the center-to-center distance between two cylindrical bubbles and a is the

radius of the cylinder). In particular, for the multi-bubble case, the

induced E x B drift velocity is reduced by more than 20% to 40% as xo/a is

decreased from 3 to 1.5. At the same time, a horizontal drift of as much

as 50% of the vertical drift (with equatorial F region geometry in mind) is

produced and the drift velocity within bubbles can vary by 20% to 40%.

This nonuni-formity in the field and in the induced E x B drift is reduced

as xo/a increases. However, even for x /a > 5, the nonuniformity is still

in the range of a few percent.



In the case of the multi-finger configuration, observations (see, for

example, Davis et al., 1974) indicate that the late-time striation fingers

typically have xo/a in the range of 1.5 to 2.5. Thus, one important

observational constraint on any possible quasi-steady state solution is

that the electric field inside each cloud must be uniform even for

separation distances xo/a of 1.5 to 2.5, i.e., even in the regime where the

inter-cloud electrical interaction is significant. It was already observed

in Paper I that the nonuniformity in the multi-cloud configuration was less

pronounced than in the multi-bubble configuration for the same separation

distance. In this paper, we will show quantitatively that quasi-steady

state solutions do exist for multiple plasma cloud striations even at small

separation distances.

In section 2, we briefly review the theoretical formulation of two-

cloud and multi-cloud configurations. In section 3, we present the

detalled results of the above configurations. In Section 4 we give the

summary and discussion.
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2. THEORETICAL FORMULATION

In this paper, we consider the instantaneous electric field of a

system consisting of a finite number of electrically interacting plasma

density enhancements ("fingers") imbedded in a uniform background plasma

and neutral gas. Neutral wind effects are not included. In Figure 1, two

interacting clouds are shown schematically along with the coordinate system

and the external electric and geomagnetic fields. The clouds ("fingers")

are modeled by cylinders with circular cross-sections of radius a, and the

center-to-center separation distance is 2xo . The axes of the cylinders are

aligned with the earth's magnetic field (B z) which is assumed to be

uniform. The clouds are immersed in a uniform ambient electric field E. as

indicated in Figure 1. For the present paper, we adopt the basic

theoretical formulation of Paper I, utilizing the dielectric analogy to

obtain the polarization induced electric field of the multi-finger

system. We give below a brief summary of the relevant theoretical results

as applied to F-region ionospheric plasma clouds and refer the reader to

Paper I for a more comprehensive treatment and a list of references.

The basic equation describing the instantaneous polarization induced

electric field, say, at t - 0, is

7 " ( E) - 0 (1)

where

nec
Vn B (2)
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is the Pedersen conductivity for an F region plasma cloud. Equation (1) is

equivalent to conservation of the cross-field plasma current arising from

ion and electron drifts. The electric field E which drives the current

consists of the uniform external field E. and the polarization induced

self-field. The electric field E satisfies the conditions across the cloud

boundaries

(a E), a continuous

(E) - continuous (3)

and at infinity (x,y )

E+E (4)
-- -

The symbols a and I refer to the directions parallel and perpendicular to

the boundary surfaces, respectively. The above dielectric analogy was

noted by L ongmire (1970) and Perkins et al. (1973).

In Paper I, we developed the method of image dipoles to solve equation

(I) exactly, subject to the conditions (3) and (4). In the interest of

keeping the paper self-contained, we repeat the salient results (equations

(17), (18), (22) and (23) of Paper I). For the two-cloud system, the total

electric field outside the cylindrical clouds has components

Ex E 0 + : 2Pn[f(x + xn 'y) + f(x - xny)], (5)
n0o

and

I
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E Z 2P nh(x + x ny) + h(x - x noY)) (6)
n-0

The total electric field E inside the cloud centered at x x has the

components 
A

2 
.4

n-0

and

E 2- Z 2P h(x +x Y,y) (8)
y I+K n i n n

where the functions f and h are defined as

f(xv) X

(X2 + y)

and

h(x,y) x

(x2 + yZ)2

For n *0, we have

- 1- a2

n I+K)b 2  n-li
n

b~ ~x + x

7



and

a2
n x + x -

For n -0, we have xn =x o and Pn = PO where

SL -KaI0O 2 1+' K) Zo" (9)

Here,

K (10)
°2

where a1 and a2 are the Pedersen conductivities inside and outside the

clouds, respectively. In reality, the collision frequency v. and thei~n

number density n vary along the magnetic field so that the conductivity

ratio K should be redefined in terms of flux-tube integrated quantities.

For the cylindrical cloud centered at x - - xo, the inside field is

obtained by replacing xn with - x. in the functions f and h. For a

N > 3 system, a parallel calculation based on the same theoretical

formulation yields series expressions similar to equations (5) through

(8). Because they are extremely cumbersome and give no new insight, we

will show only the results of the two and three cloud systems in this

paper. Also, we will present detailed results only for N - 2 and N - 3

cases since Paper I has shown that N > 5 systems exhibit no significant

quantitative or qualitative differences from the N - 3 case.
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3. QUASI-STEADY STATE MULTI-CLOUD CONFIGURATION RESULTS

Equations (5) through (8) and the corresponding equations for a three-

cloud system describe the electric field in the frame moving with the

velocity cE x 13o/B 2 relative to Lhe earth. As a result of the

polarization electric field, the plasma clouds undergo induced E x B drift

motion with respect to the undisturbed ionosphere. If we define

E E -E, (11)

then the relative drift velocity is

Ex B
V - •(12)

- B2

Here, E -- E x. In particular, the Ex B drift velocity _V of a single

isolated cloud is given by

(1-K cE

0

For plasma clouds, K > I and V/ is downward toward the earth (in an

equatorial ionospheric configuration). This equation also shows that the

plasma elements inside an isolated cloud drift uniformly, maintaining its

geometrical shape. Thus, it is a steady-state configuration. Figure 2

shows the field lines corresponding to E given by equation (11). Inside

the cloud, the field and hence the E x B drift are uniform while the field

outside the cloud is that of a dipole Po (equation (9)) located at the

center of the circle.

9



In Figures 3(a), (b) and (c), we show a two-cloud configuration with

the separation distance xo/a - 1.25 for three values of the conductivity

ratio K. This separation distance is smaller than the typical multi-finger

situation where xo/a is roughly 1.5 to 2.5 (see, for example, Davis et al.,

1974). In fact, for xo/a < 1.25, it may be observationally difficult to

identify the adjoining clouds as separate. This separation distance is

shown in order to maximize the effect of the inter-cloud interaction.

Moreover, the K - 3 case is shown primarily because this value corresponds

to the maximum inter-cloud influence for a given xo/a. This can be seen by

noting that each term in the series in equations (7) and (8) contains a

power of the factor (1-K)/(l+K)2. For K > 1, the absolute value of this

quantity has a maximum at K - 3. Thus, Figure 3(a) represents the largest

nonuniformity in the inside electric field for x /a - 1.25. As K

increases, the nonuniformity decreases as shown by Figures 3(b) and (c).

As a general remark, K is taken to be of the order of 10 for artificial

barium clouds and is taken to be of the order of 100 or greater for nuclear

clouds.

In Table 1, we show the numerical values of the two-

cloud E x B direction drift velocity V (equation (12)) normalized
-- -o

to cEo/B o , along with the values of V. = -(l-K)/(l+K), the normalized drift

velocity (see equation (13)) of an isolated cloud. For xo/a - 1.25, the K

- 3 case exhibits a variation in V of up to 30% inside the clouds.This

variation (i.e., nonuniformity) decreases as K increases. For K - 10, the

variation is roughly 10% and for K - 100, it is 1%. In addition, V

approaches the single-cloud value Vs as K increases. Thus, we conclude

that, even for a small separation distance of xo/a - 1.25, K 1 100 is

nearly indistinguishable from the single-cloud case. It is of importance

10



TABLE I. NORMALIZED (E x B ) DRIFT VELOCITIES FOR A TWO-PLASMA CLOUD
-0 ..0 y

SYSTEM. Vs - - (1-K)/(1+K) IS THE INDUCED DRIFT VELOCITY FOR THE SINGLE

CLOUD CASE

Xo/a K A B C Vs

1.25 3 0.3699 0.4548 0.4772 0.5000

10 0.7316 0.7889 0.8035 0.8181

100 0.9682 0.9762 0.9782 0.9802

1.5 3 0.4321 0.4701 0.4833 0.5000

10 0.7755 0.7995 0.8077 0.8181

100 0.9744 0.9777 0.9788 0.9802

2.0 3 0.4722 0.4844 0.4900 0.5000

10 0.8016 0.8089 0.8122 0.8181

100 0.9780 0.9790 0.9794 0.9802
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to note from Figures 3(a), (b) and (c) that the outside field is

significantly distorted from the single-cloud dipolar field and that the

distortion does not change appreciably as K is increased. This implies

that the intrinsic inter-cloud interaction is not weakened as K is

increased and that only the inside field is affected.

Figures 4(a), (b) and (c) and Figures 5(a), (b) and (c) show two-cloud

systems with xo/a - 1.5 and xo/a - 2.0, respectively. Again, three values

K - 3, 10 and 100 are shown for each value of xo/a. As xo/a increases, the

inter-cloud interaction decreases. As a result, the inside field is nearly

uniform even for K - 3. In particular, for xo/a - 2.0 which is a typical

separation distance between striations in late times, Table I shows that K

- 10 case has a field variation of roughly 1% and the K = 100 case has a

variation of 0.1% inside the clouds. In addition, the deviation of the

drift velocity from that of the single-cloud case is roughly 1% or less.

Such a system of multi-clouds would E x B drift in unison while each cloud

would maintain its geometrical shape.

Similar behavior is true for the three-cloud and larger N-cloud

systems. In particular, Figures 6, 7 and 8 show three-cloud systems with

xo/a - 1.25, 1.5 and 2.0, respectively. For each value of xo/a, three

values of K are shown, viz. K - 3, 10 and 100. In general, the field

inside the outer clouds tends to be slightly more nonuniform in magnitude

than that in the central cloud. On the other hand, the field in the

central cloud tends to be slightly weaker than that in the outer clouds so

that the outer clouds drift downward shomewhat faster than the central

clouds. However, the slight nonuniformity and inequality both decrease

with increasing K and vice versa.

12



Table 2 shows that, for xo/a - 1.25, the variation in the outer cloud

decreases from 35% for K - 3 to 12% for K = 10 and to 1.3% for K - 100

while the variation in the central cloud ranges from 19% for K - 3 to 6%

for K - 10 and to 0.1% for K 1 100. As xo/a increases, the nonuniformity

throughout all the clouds decreases. At xo/a - 2.0, the variation in the

field is typically less than 1% for K = 10 and K - 100. Figures 7(a), (b)

and (c) and Figures 8(a), (b) and (c) show the above behavior. Again, as

K increases, the drift velocity V inside each cloud approaches that of an

isolated cloud, Vs.

We conclude that multi-finger quasi-steady solutions do exist even for

small separation distances if K is made sufficiently large. In particular,

for xo/a - 2.0, multi-fingers with K - 10 and K - 100 both constitute

quasi-steady state configurations for all practical purposes.

Observationally, these systems would be seen to drift across the magnetic

field in unison without changing their cross-sectional shapes.

The reason for the quasi-steady state behavior is easy to understand

by examining equations (7) and (8). The electric field which determines

the relative E x B drift motion of the clouds is given by equation (11).

Therefore,

( -"K) E +-2 Z 2Pf(x + xY
x +K o I - n=K 0

From the expressions of Pn and P0 (equation (9)), we see that Pn and Po are

not sensitive to K for large K since the factor (I-K)/(l+K) is nearly equal

to -1. However, the factor 2/(l+K) multiplying the series in the above

expression and in equation (8) is nearly equal to 2/K so that the

contributions from the neighboring clouds are reduced by a factor of K-1

13



and, for K , approaches the single-cloud value -Eo(I-K)/(l+K)

with E + 0. Physically, the cloud with a large K is analogous to a
y

dielectric with a large dielectric constant (see Paper I). Note also that

the outside field (equations (5) and (6)) depends only on (I-K)/(I+K). As

a result, the outside field is not sensitive to K for large K as has been

demonstrated by Figures 3 through 8.

TABLE 2. NORMALIZED (E x B ) DRIFT VELOCITIES FOR A THREE PLASMA CLOUD

SYSTEM. Vs - - (1-K)/(I+K) IS THE INDUCED DRIFT VELOCITY FOR THE SINGLE CLOUD

CASE.

x o/a K A B C D E Vs

1.25 3 0.4069 0.3419 0.3450 0.4405 0.4678 0.5000

10 0.7560 0.7104 0.7116 0.7781 0.7905 0.8181

100 0.9715 0.9703 0.9651 0.9746 0.9772 0.9802

1.5 3 0.4391 0.4137 0.4183 0.4612 0.4769 0.5000

10 0.7395 0.7631 0.7655 0.7932 0.8034 0.8181

100 0.9750 0.9727 0.9730 0.9768 0.9782 0.9802

2.0 3 0.4673 0.4604 0.4650 0.4792 0.4861 0.5000

10 0.7981 0.7939 0.7965 0.8053 0.8096 0.8181

100 0.9775 0.9770 0.9773 0.9784 0.9790 0.9802

14



4. SUMMARY AND DISCUSSION

In this paper, we have described the morphology of two-plasma cloud

and three-plasma cloud configurations, embedded in an F region ionosphere,

in detail using the techniques developed in Paper I. The results are

applicable to larger N-plasma cloud systems to a good approximation. The

primary objective of this paper is to demonstrate the existence of quasi-

steady state multi-plasma cloud configurations in which the electric field

inside all the clouds is essentially uniform and equal so that such systems

would be seen to drift in unison across the magnetic field while

maintaining the overall geometrical shapes.

We have shown that the influence of neighboring clouds on the electric

field inside the clouds decreases as KI for any xo/a so that the cloud

interior is effectively "shielded" from the inter-cloud interactions.

Thus, if there is an array of cylindrical clouds with circular cross-

sections, each one of which has uniform polarization induced electric field

in the absence of neighboring clouds, then the electric field inside each

cloud approaches the uniform field of an isolated cloud in the limit as

K + - for any xo/a >1.

In particular, for K - 10, a typical value for barium clouds, the

nonuniformity in the magnitude of the drift velocity is approximately 10%

for xo/a - 1.25. The drift velocity is also reduced from V. by

approximately 10%. As xo/a is increased to 2.0, the nouniformity is

reduced to approximately 0.1% and the magnitude of V is also reduced from

Vs by a small fraction of 1% (see Tables 1 and 2). Thus, for high-K multi-

plasma clouds, deviations from complete uniformity (i.e. an exact steady

state configuration) are practically imperceptible.

15I



It has been conjectured (N. Zabusky and E. Overman, 1983, private

communication) that one can obtain steady-state solutions for multi-cloud

systems by adjusting the contour of each cloud. One cross-section

suggested is an ellipse. However, the underlying reason for the quasi-

steady state solutions obtained in this paper is the K71 "shielding" effect

exhibited by high-K clouds. In fact, since isolated elliptic cross-

sections are known 1978) to correspond to steady state configurations

(Ossakow and Chaturvedi, 1978), we expect an array of clouds with the same
I-

elliptic cross-sections to undergo quasi-steady state E x B drift motion if

the Pedersen conductivity ratio K is large.

It is not too far-fetched to use a cylindrical waterbag model for

evolving plasma clouds and their associated striations. Linson (1972) has

shown that evolving (steepening) barium clouds tend to obey a cylindrical

rather than a sheet-like model. Also, the results from numerical

simulations of steepening equatorial spread F bubbles (with distributed

density) show that, at late times, they are best modeled by cylindrical

waterbag models (see Ossakow and Chaturvedi, 1978; Ossakow et al., 1979).

In the real plasma cloud and attendant striation phenomena, there are

continuous plasma density profiles, which subsequently steepen on their

backside. As they steepen, at late times, they look like waterbags, except

in a thin shell. Thus, the approximation of circular cross sections with

piecewise constant density profiles for plasma cloud striation fingers is

expected to be applicable in the nonlinear regimes (late times).
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Fig. 1 A schematic drawing of two plasma density enhancements ("clouds")

and the coordinate system. The clouds have circular cross-sections

of radius a and are infinite in extent along the z direction.
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Fig. 2 The f ield line conf iguration of E (equation (11)) for an isolated

cloud. is uniform inside the cloud and dipolar outside. The

cloud drifts according to equation (12).
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